
Moving Forward: Machine Learning

With a reliable method for interpolating supernovae light curves, we have 
laid the framework for which we can develop a machine learning algorithm. 
Our next step will use wavelet decomposition, a method for feature 
extraction, to reduce the dimensionality of  our dataset. These features 
accurately describe each light curve in a much simpler form. Using these 
features, we will train our algorithm, and use cross validation to test its 
accuracy. 
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Modeling Techniques

All data used was gathered from the Open Supernovae Catalog (Guillochon
et al. 2017) For interpolation, we fitted both parametric models (Karpenka et 
al. 2013, Bazin et al. 2009) and Gaussian processes. Parametric fits force the 
model upon a given structure, but Gaussian processes uses relationships 
between the data points themselves (through a covariance function) to model 
both long term and short term behaviors. We compared the accuracy of  
several polynomial fits, two different parametric fits, and two Gaussian 
processes on 386 different supernovae including 747 different light curves 
across several filters.

Model Evaluation

Each model was evaluated using ‘leave one out’ cross validation. Looping over 
the data points, each iteration would remove one of  the data points. We 
would then fit, and  evaluate the model at the point in time of  the missing 
data point, creating a set of  predicted values. We used the summary statistic 
given below to measure how closely the predicted values determined by the 
models, matched the observed values gathered from the Open Supernovae 
Catalog. 

Introduction

In a few years, the Large Synoptic Survey Telescope (LSST) will start its 10 
year survey of  the night sky, delivering a massive 30 terabytes of  data, and 
discovering over 2,000 new supernovae each night. Because LSST discovers 
supernovae so quickly, it is impossible to gather the spectral information for 
each of  these exploding stars. Thus, classification of  supernovae solely 
through the analysis of  their spectra will be nowhere near exhaustive. With 
this issue in mind, we must look to other methods for classifying supernovae, 
such as analysis of  their photometry, that will allow us to fully take 
advantage of  LSST’s large data set. Unfortunately, classification through 
photometric observations is not as straightforward as through spectra. 
Photometry does not have visibly discerning features for classification 
purposes. We will use the tools of  machine learning for the purposes of  
supernovae classification through photometry, and eventually, for outlier 
detection.

Why Model Light Curves?

One problem with solely analyzing the photometric data of  supernovae is 
the gaps between observations. To develop a machine learning algorithm to 
classify supernovae based on their photometry, we need to create a smoother 
curve on which to run our machine learning algorithm. A method to create 
accurate models of  light curves given limited sets of  photometric 
observations must be developed. 
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Figure	1
B Band photometry data for SN2011fe, one of  the most extensively 
studied supernovae to date. Still, there is a clear gap in data between 
the rise and fall due to detector saturation.

Equation	1
The formula used to evaluate the accuracy of  the model at the point in 
time of  the removed data point. The most accurate models minimize these 
values.

Equations	2	;3
Summary statistics calculated from the 𝜉	values. 𝜁, is the LOO CV RNMSE (leave 
one out cross validation root normalized mean squared error) , an overall metric of  how 
well the model reproduces missing observations. Lower values of   𝜁 represent a better fit 
to the data. The median statistic was used to account for the effect of  outliers on the 𝜁
values.
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The field of  view  for LSST – one shot is 40 times the 
size of  the full moon. image credit: SLAC

Figure	2
Comparison of  a parametric model versus a Gaussian process. The 
Gaussian process more accurately describes the observed data. 

Figure	3	
Figure 3 gives a scatter plot of  the median vs 𝜁	value, where each color 
represents a different model. We can see that the parametric models did not 
interpolate the missing data points as well as the Gaussian processes, 
confirmed by their larger 𝜁 values. 
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